Low-voltage AC Switchgear

General

Low-voltage AC switchgears can be used in many fields of low-voltage distribution systems. In the power plant, transformer substation, petroleum chemical industry, factory and mining enterprise, high-rise construction, it is used of the power, the illumination, the compensation and electric energy transformation, distribution and control of distribution equipment.

This new type low voltage draw-out switchgear is designed according to principle of safety, economic, reasonable that for satisfied with continuous development electric power market which need for increases, computer connection, power centralization of control, convenience installment service etc. the product possess high breaking and switch-on ability, good thermo stability, flexible electric project, convenience combination, strong practicability, newly structure and high protection degree.


Structure Feature

- The main frame uses the molding assembly. It has the modulus hole E=20mm for installing on the main frame.
- Each element cells are separated strictly, the main separates rooms are function element cell, the bus-bar room, the cable room, the function and usage of each unit is relative independence.
- The cable room can choose upper and below passing in and out line.
- A drawer is an independent function unit.
- The drawer has ½ unit, 1 unit, 2 units and 3 units of four sizes series (the height of 1 unit drawer is: 200mm). The most rated current of drawer unit is: 63A, 250A, 400A, 500A, 630A.
- The same function unit drawer may facilitate realization exchange.
- In each cabinet may assemble nine 1unit drawers or eighteen ½ unit drawers.
- The equipment can conveniently combine as a group with dry type transformer, also can conveniently connect with low voltage bus-bar of oil immersed transformer.
- The drawer of the product has draw-out type (draw-out or plug-in the circuit breaker), and fixed type, its can be combined and selected freely.

Technical Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Unit</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rated insulation voltage</td>
<td>V</td>
<td>AC 690(1000)</td>
</tr>
<tr>
<td>2</td>
<td>Rated working voltage</td>
<td>V</td>
<td>AC 400(690)</td>
</tr>
<tr>
<td>3</td>
<td>Rated frequency</td>
<td>Hz</td>
<td>50(60)</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal bus-bar Rated current</td>
<td>A</td>
<td>≤3200</td>
</tr>
<tr>
<td>5</td>
<td>MCC vertical bus-bar rated current</td>
<td>A</td>
<td>≤1250</td>
</tr>
<tr>
<td>6</td>
<td>Rated short-time withstand current</td>
<td>kA</td>
<td>≤50</td>
</tr>
<tr>
<td>7</td>
<td>Rated peak value withstand current</td>
<td>kA</td>
<td>≤105</td>
</tr>
<tr>
<td>8</td>
<td>Degree of protection</td>
<td></td>
<td>IP30~54</td>
</tr>
</tbody>
</table>
Installation diagram of interconnection cubicle

- Cover plate
- Cabinet
- 10# Channel steel
- Cable chute
- D (Depth)
- Frontage
- Back cable channel hole
- W-100
- D-100

≥1000
≥1800